

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2016 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

(10)

PURE MATHEMATICS

TIME ALLOWED: THREE HOURS			MAXIMUM MARKS = 100	
		Attempt FIVE questions in all by selecting TWO Questions each from SECTION-A&B and		
	(ii)	ONE Question from SECTION-C. ALL questions carry EQUAL marks. All the parts (if any) of each Question must be attempted at one place instead of at different		
		places.		
	1. 1	(iii) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.(iv) No Page/Space be left blank between the answers. All the blank pages of Answer Book mus		
	(11)	be crossed.		
	(v) (vi)	Extra attempt of any question or any part of the attempted question will not be considered. Use of Calculator is allowed.		
SECTION-A				
Q. 1.	(a)	Prove that the normaliser of a subset of	a group G is a Subgroup of G .	(10)
	(b)			
		$\langle A,B \rangle = AB$		
0.4				- (10)
Q. 2.	(a)	Let a be a fixed point of a group G and consider the mapping I_a : $G \rightarrow G$ defined by $I_a(g) = aga^{-1}$ where $g \in G$.		
			Also show that Son a b C C I I = I	(10) (20)
		Show that I_a is an automorphism of G .	Also show that for $a, b \in G$, $I_a.I_b=I_{ab}$	(10) (20)
	(b)	Let $M_2(R) = \left\{ \begin{bmatrix} a & c \\ c & d \end{bmatrix} : a, b, c, d \right\}$	$\in R$ be the set of all 2×2 matrices with	
		real entries. Show that ($M_2(R)$, +, ·) forms a ring with identity. Is ($M_2(R)$, +, ·) a field?		
		a neid?	S Z	
Q. 3.	(a)	Let $T: X \rightarrow Y$ be a linear transformation	on from a vector space X into a Vector	(10)
	()	space Y . Prove that Kernal of T is a subspace.		
	(b)	Find the value of λ such that the system of equations (10) (20)		
		$x + \lambda y + 3z = 0$		
		$x + \lambda y + 3z = 0$ $4x + 3y + \lambda z = 0$ $2x + y + 2z = 0$		
		2x + y + 2z = 0		
		has non-trivial solution.	5	
		SECT	TION-B	
Q. 4.	(a)	Using δ - \in definition of continuity, p	rove that the function Sin^2x is continuous	(10)
		for all $x \in \mathbb{R}$.		
	(b)	Find the asymptotes of the curve (x^2-y^2)	$(x+2y) + 5(x^2+y^2) + x+y = 0$	(10) (20)

Q. 5. (a) Prove that the maximum value of $\left(\frac{1}{x}\right)^x$ is $o^{1/e}$.

PURE MATHEMATICS

- **Q. 6.** (a) Find the area enclosed between the curves $y=x^3$ and y=x. (10)
 - (b) A plane passes through a fixed point (a, b, c) and cuts the coordinate axes in A,B,C. Find the locus of the centre of the sphere OABC for different positions of the plane, O is the origin. (10)

SECTION-C

Q. 7. (a) Determine P(z) where (10)

 $P(z) = (z - z_1)(z - z_2)(z - z_3)(z - z_4)$ with $z_1 = e^{i\pi/4}$, $z_2 = \bar{z}_1$, $z_3 = -z_1$ and $z_4 = -\bar{z}_1$.

- (b) Find value of the integral $\int_{c}^{c} (z-z_0)^n dz$, (n any integer) along the circle C (10) (20)with centre and z_0 radius r, described in the counter clock wise direction.
- Q. 8. (a) Use Cauchy Integral Formula to evaluate $\int_c \frac{c \circ h \, z + s \, i \, 2 \, z}{z \sqrt{1}/2} \, dz$ along the simple closed counter C: |z| = 3 described in the positive direction.
 - (b) State and prove Cauchy Residue Theorem. (10) (20)

STUDY RIVER

CONNECTING STUDENTS & SERVICES

www.StudyRiver.com