

PHYSICS, PAPER-I

PART-I(M	CQS):	D: THREE HOURS MAXIMUM 30 MINUTES	PART-I (MCQS) PART-II	MAXIMUM MARKS = MAXIMUM MARKS =	
 NOTE: (i) Part-II is to be attempted on the separate Answer Book. (ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks. (iii) All the parts (if any) of each Question must be attempted at one place instead of at different places. 					
(v)	Cand No P be cr	lidate must write Q. No. in the An age/Space be left blank between ossed.	the answers. All the bla	ank pages of Answer Book	must
 (vi) Extra attempt of any question or any part of the attempted question will not be considered. (vii) Use of Calculator is allowed. 					
A A PART-II					
Q. No. 2.	(a) (b)	State and prove Stoke's theorem Prove that if the vector is the g around a closed curve is zero.		tion then its line integral	(8) (4)
	(c)	A particle moves along the cur time. Find the components of direction 2i-3j+2k			(8)
Q. No. 3.	 (a) What is moment of inertia? State and prove parallel axis theorem. (b) Calculate rotational inertia of a hollow cylinder about cylindrical axis. 				
Q. No. 4.	(a) (b)	State and prove the Kepler's planetary motion. A satellite orbits at a height of			(8) (6)
	(c)	period of satellite? At what altitude above the earth value at the surface of the earth.	h surface the value of '		(6) (6)
Q. No. 5.	(a) (b)	What is diffraction grating? Ex for resolving power of grating. What is meant by polarization by a polarizing sheet?		-	(12) (8)
Q. No. 6.	(a)	Derive equation of Lorentz ve light is independent of the relati	ve motion between the f	frames of reference.	(12)
	(b)	The siren of a police car emits a frequency that would you receiv (i) Your car at rest, police c (ii) Police car at rest, your c (iii) Your and police car are (iv) Your car moving at 9 m.	ve in your car under the car moving towards you car moving towards it at moving towards one and	following circumstances. at 29 m/s. 29 m/s. other at 14.5 m/s.	(8)
Q. No. 7.	(a) (b) (c)	Define Entropy. State Second la Discuss applications of First La Discuss briefly the Lissajous pa	w of thermodynamics.	n terms of Entropy.	(8) (6) (6)
Q. No. 8.	Expla (a) (b) (c) (d) (e)	in any FOUR of the following ter Doppler's Effect Bernoulli's theorem Newton's rings He-Ne Gas LASER Brownian motion	ms.	(05 each)	(20)